Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.

Identifieur interne : 000F55 ( Main/Exploration ); précédent : 000F54; suivant : 000F56

Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.

Auteurs : Hyunwoo Jeon [Corée du Sud] ; Pradeepraj Durairaj [Corée du Sud] ; Dowoo Lee [Corée du Sud] ; Md Murshidul Ahsan [Corée du Sud] ; Hyungdon Yun [Corée du Sud]

Source :

RBID : pubmed:27666994

Descripteurs français

English descriptors

Abstract

Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase FoCYP53A19 and its homologous redox partner FoCPR from Fusarium oxysporum were co-expressed with the BsGDH from Bacillus subtilis in Saccharomyces cerevisiae for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The FoCYP53A19+FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at 30°C. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.

DOI: 10.4014/jmb.1605.05090
PubMed: 27666994


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.</title>
<author>
<name sortKey="Jeon, Hyunwoo" sort="Jeon, Hyunwoo" uniqKey="Jeon H" first="Hyunwoo" last="Jeon">Hyunwoo Jeon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Durairaj, Pradeepraj" sort="Durairaj, Pradeepraj" uniqKey="Durairaj P" first="Pradeepraj" last="Durairaj">Pradeepraj Durairaj</name>
<affiliation wicri:level="1">
<nlm:affiliation>Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Korean Lichen Research Institute, Sunchon National University, Suncheon 57922</wicri:regionArea>
<wicri:noRegion>Suncheon 57922</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Biotechnology, Yeungnam University, Gyeongsan 38541</wicri:regionArea>
<wicri:noRegion>Gyeongsan 38541</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Dowoo" sort="Lee, Dowoo" uniqKey="Lee D" first="Dowoo" last="Lee">Dowoo Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ahsan, Md Murshidul" sort="Ahsan, Md Murshidul" uniqKey="Ahsan M" first="Md Murshidul" last="Ahsan">Md Murshidul Ahsan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Biotechnology, Yeungnam University, Gyeongsan 38541</wicri:regionArea>
<wicri:noRegion>Gyeongsan 38541</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yun, Hyungdon" sort="Yun, Hyungdon" uniqKey="Yun H" first="Hyungdon" last="Yun">Hyungdon Yun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27666994</idno>
<idno type="pmid">27666994</idno>
<idno type="doi">10.4014/jmb.1605.05090</idno>
<idno type="wicri:Area/Main/Corpus">000E06</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E06</idno>
<idno type="wicri:Area/Main/Curation">000E06</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E06</idno>
<idno type="wicri:Area/Main/Exploration">000E06</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.</title>
<author>
<name sortKey="Jeon, Hyunwoo" sort="Jeon, Hyunwoo" uniqKey="Jeon H" first="Hyunwoo" last="Jeon">Hyunwoo Jeon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Durairaj, Pradeepraj" sort="Durairaj, Pradeepraj" uniqKey="Durairaj P" first="Pradeepraj" last="Durairaj">Pradeepraj Durairaj</name>
<affiliation wicri:level="1">
<nlm:affiliation>Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Korean Lichen Research Institute, Sunchon National University, Suncheon 57922</wicri:regionArea>
<wicri:noRegion>Suncheon 57922</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Biotechnology, Yeungnam University, Gyeongsan 38541</wicri:regionArea>
<wicri:noRegion>Gyeongsan 38541</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Dowoo" sort="Lee, Dowoo" uniqKey="Lee D" first="Dowoo" last="Lee">Dowoo Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ahsan, Md Murshidul" sort="Ahsan, Md Murshidul" uniqKey="Ahsan M" first="Md Murshidul" last="Ahsan">Md Murshidul Ahsan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Biotechnology, Yeungnam University, Gyeongsan 38541</wicri:regionArea>
<wicri:noRegion>Gyeongsan 38541</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yun, Hyungdon" sort="Yun, Hyungdon" uniqKey="Yun H" first="Hyungdon" last="Yun">Hyungdon Yun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of microbiology and biotechnology</title>
<idno type="eISSN">1738-8872</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacillus subtilis (enzymology)</term>
<term>Bacillus subtilis (genetics)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Biotransformation (MeSH)</term>
<term>Cytochrome P-450 Enzyme System (genetics)</term>
<term>Cytochrome P-450 Enzyme System (metabolism)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Fusarium (enzymology)</term>
<term>Fusarium (genetics)</term>
<term>Gene Expression (MeSH)</term>
<term>Glucose 1-Dehydrogenase (genetics)</term>
<term>Glucose 1-Dehydrogenase (metabolism)</term>
<term>Metabolic Engineering (MeSH)</term>
<term>Mixed Function Oxygenases (genetics)</term>
<term>Mixed Function Oxygenases (metabolism)</term>
<term>NADP (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bacillus subtilis (enzymologie)</term>
<term>Bacillus subtilis (génétique)</term>
<term>Biotransformation (MeSH)</term>
<term>Cytochrome P-450 enzyme system (génétique)</term>
<term>Cytochrome P-450 enzyme system (métabolisme)</term>
<term>Expression des gènes (MeSH)</term>
<term>Fusarium (enzymologie)</term>
<term>Fusarium (génétique)</term>
<term>Glucose 1-dehydrogenase (génétique)</term>
<term>Glucose 1-dehydrogenase (métabolisme)</term>
<term>Génie métabolique (MeSH)</term>
<term>Mixed function oxygenases (génétique)</term>
<term>Mixed function oxygenases (métabolisme)</term>
<term>NADP (métabolisme)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Cytochrome P-450 Enzyme System</term>
<term>Fungal Proteins</term>
<term>Glucose 1-Dehydrogenase</term>
<term>Mixed Function Oxygenases</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Bacillus subtilis</term>
<term>Fusarium</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Bacillus subtilis</term>
<term>Fusarium</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacillus subtilis</term>
<term>Fusarium</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bacillus subtilis</term>
<term>Cytochrome P-450 enzyme system</term>
<term>Fusarium</term>
<term>Glucose 1-dehydrogenase</term>
<term>Mixed function oxygenases</term>
<term>Protéines bactériennes</term>
<term>Protéines fongiques</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Cytochrome P-450 Enzyme System</term>
<term>Fungal Proteins</term>
<term>Glucose 1-Dehydrogenase</term>
<term>Mixed Function Oxygenases</term>
<term>NADP</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytochrome P-450 enzyme system</term>
<term>Glucose 1-dehydrogenase</term>
<term>Mixed function oxygenases</term>
<term>NADP</term>
<term>Protéines bactériennes</term>
<term>Protéines fongiques</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biotransformation</term>
<term>Gene Expression</term>
<term>Metabolic Engineering</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biotransformation</term>
<term>Expression des gènes</term>
<term>Génie métabolique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase
<i>FoCYP53A19</i>
and its homologous redox partner FoCPR from
<i>Fusarium oxysporum</i>
were co-expressed with the BsGDH from
<i>Bacillus subtilis</i>
in
<i>Saccharomyces cerevisiae</i>
for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The
<i>FoCYP53A19</i>
+FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at 30°C. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27666994</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>03</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1738-8872</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2016</Year>
<Month>Dec</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Journal of microbiology and biotechnology</Title>
<ISOAbbreviation>J Microbiol Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>2076-2086</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4014/jmb.1605.05090</ELocationID>
<Abstract>
<AbstractText>Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase
<i>FoCYP53A19</i>
and its homologous redox partner FoCPR from
<i>Fusarium oxysporum</i>
were co-expressed with the BsGDH from
<i>Bacillus subtilis</i>
in
<i>Saccharomyces cerevisiae</i>
for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The
<i>FoCYP53A19</i>
+FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at 30°C. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jeon</LastName>
<ForeName>Hyunwoo</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Durairaj</LastName>
<ForeName>Pradeepraj</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Republic of Korea.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Dowoo</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ahsan</LastName>
<ForeName>Md Murshidul</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>School of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yun</LastName>
<ForeName>Hyungdon</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Korea (South)</Country>
<MedlineTA>J Microbiol Biotechnol</MedlineTA>
<NlmUniqueID>9431852</NlmUniqueID>
<ISSNLinking>1017-7825</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-51-2</RegistryNumber>
<NameOfSubstance UI="D003577">Cytochrome P-450 Enzyme System</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D006899">Mixed Function Oxygenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.47</RegistryNumber>
<NameOfSubstance UI="D042843">Glucose 1-Dehydrogenase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001412" MajorTopicYN="N">Bacillus subtilis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001711" MajorTopicYN="N">Biotransformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003577" MajorTopicYN="N">Cytochrome P-450 Enzyme System</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005670" MajorTopicYN="N">Fusarium</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042843" MajorTopicYN="N">Glucose 1-Dehydrogenase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060847" MajorTopicYN="N">Metabolic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006899" MajorTopicYN="N">Mixed Function Oxygenases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Cytochrome P450</Keyword>
<Keyword MajorTopicYN="Y">Saccharomyces cerevisiae</Keyword>
<Keyword MajorTopicYN="Y">benzoate hydroxylase</Keyword>
<Keyword MajorTopicYN="Y">biotransformation</Keyword>
<Keyword MajorTopicYN="Y">glucose dehydrogenase</Keyword>
<Keyword MajorTopicYN="Y">heterologous expression</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27666994</ArticleId>
<ArticleId IdType="pii">10.4014/jmb.1605.05090</ArticleId>
<ArticleId IdType="doi">10.4014/jmb.1605.05090</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
<region>
<li>Région capitale de Séoul</li>
</region>
<settlement>
<li>Séoul</li>
</settlement>
</list>
<tree>
<country name="Corée du Sud">
<region name="Région capitale de Séoul">
<name sortKey="Jeon, Hyunwoo" sort="Jeon, Hyunwoo" uniqKey="Jeon H" first="Hyunwoo" last="Jeon">Hyunwoo Jeon</name>
</region>
<name sortKey="Ahsan, Md Murshidul" sort="Ahsan, Md Murshidul" uniqKey="Ahsan M" first="Md Murshidul" last="Ahsan">Md Murshidul Ahsan</name>
<name sortKey="Durairaj, Pradeepraj" sort="Durairaj, Pradeepraj" uniqKey="Durairaj P" first="Pradeepraj" last="Durairaj">Pradeepraj Durairaj</name>
<name sortKey="Durairaj, Pradeepraj" sort="Durairaj, Pradeepraj" uniqKey="Durairaj P" first="Pradeepraj" last="Durairaj">Pradeepraj Durairaj</name>
<name sortKey="Lee, Dowoo" sort="Lee, Dowoo" uniqKey="Lee D" first="Dowoo" last="Lee">Dowoo Lee</name>
<name sortKey="Yun, Hyungdon" sort="Yun, Hyungdon" uniqKey="Yun H" first="Hyungdon" last="Yun">Hyungdon Yun</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F55 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F55 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27666994
   |texte=   Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27666994" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020